Skip to content

Settings with Other NTCs

While the driver is optimized for the NTCAFLEX05103HH sensor, you can use other 10kΩ NTC thermistors by calculating the appropriate potentiometer resistance values.

Before starting, obtain from your NTC datasheet:

  • R(T) curve - Resistance vs. Temperature table
  • Beta value (B25/85 or similar)
  • Resistance at reference temperature (usually 10kΩ @ 25°C)
R_POT = R(NTC@TEMP) × 2.3791

Where:

  • R_POT = Resistance to set at TEMP ADJ measurement points
  • R(NTC@TEMP) = NTC resistance at your desired threshold temperature
  • 2.3791 = Driver-specific calibration factor
  1. Select your desired threshold temperature (e.g., 30°C)

  2. Find NTC resistance at that temperature from datasheet

    • Example: R(30°C) = 8.312 kΩ (from your NTC datasheet)
  3. Calculate required potentiometer resistance:

    R_POT = 8.312 kΩ × 2.3791
    R_POT = 19.773 kΩ
  4. Measure and adjust:

    • Measure resistance at TEMP ADJ points
    • Adjust TEMP potentiometer to 19.773 kΩ
R(NTC@HYST) = R_POT / 1.7034

Then use the NTC datasheet to find the temperature corresponding to R(NTC@HYST).

  1. Use the R_POT value calculated above

  2. Calculate NTC resistance at hysteresis:

    R(NTC@HYST) = R_POT / 1.7034
    R(NTC@HYST) = 19.773 kΩ / 1.7034
    R(NTC@HYST) = 11.608 kΩ
  3. Find corresponding temperature in NTC datasheet

    • Look up 11.608 kΩ in the R(T) table
    • Example: This corresponds to ~23°C
  4. Result: Hysteresis temperature is 23°C

Threshold: 30°C (shutdown trigger)
↕ 7°C
Hysteresis: 23°C (can re-enable)

Example: Using Vishay NTCLE100E3103JB0 (10kΩ NTC)

Section titled “Example: Using Vishay NTCLE100E3103JB0 (10kΩ NTC)”

Goal: Set threshold temperature to 35°C

From datasheet: R(35°C) = 6.532 kΩ

R_POT = 6.532 kΩ × 2.3791
R_POT = 15.537 kΩ
  • Disconnect power
  • Measure at TEMP ADJ points
  • Adjust to 15.537 kΩ
R(NTC@HYST) = 15.537 kΩ / 1.7034
R(NTC@HYST) = 9.120 kΩ

From datasheet: 9.120 kΩ corresponds to ~28°C

Threshold Temperature: 35°C
Hysteresis Temperature: 28°C
Temperature Span: 7°C
R_POT Setting: 15.537 kΩ

The manual also mentions an alternative formula for hysteresis calculation:

R(NTC@TEMP) = R_POT / 2.004
  1. Disconnect power supply

  2. Calculate R_POT using formulas above

  3. Adjust TEMP potentiometer:

    • Measure resistance at TEMP ADJ points
    • Adjust to calculated R_POT value
  4. Solder NTC to cables:

    • ✅ Polarity is NOT relevant for NTC
    • Use heat-shrink tubing for insulation
  5. Connect to NTC connector on board

  6. Temperature monitoring is set

  7. Connect power supply

ParameterDescriptionExample
R25Resistance at 25°C10,000 Ω
B25/85Beta value3960 K
R(T) TableResistance vs TempFull table from -40°C to +150°C
ToleranceResistance tolerance±1% or ±5%

If only Beta value is available, use the Steinhart-Hart equation or simplified Beta formula:

R(T) = R25 × exp(B × (1/T - 1/T25))

Where:

  • T = Temperature in Kelvin (°C + 273.15)
  • T25 = 298.15 K (25°C)
  • B = Beta value
  • R25 = Resistance at 25°C
  1. Power up driver
  2. Check TEMP LED - should be ON
  3. Monitor actual temperature (if possible)
  4. Verify threshold by controlled heating
  5. Check hysteresis during cooling
  6. Document final settings
ManufacturerPart NumberB25/85Notes
MurataNXFT15XH103FA2B3380KGood stability
VishayNTCLE100E3103JB03977KHigh accuracy
TDKB57164K0103J3964KStandard type
Semitec103AT-113435KPopular choice

The span between threshold and hysteresis depends on:

  • NTC Beta value
  • NTC R(T) curve characteristics
  • Fixed driver calibration factors

Typical spans: 5-10°C

Final temperature accuracy depends on:

  • NTC tolerance (±1% to ±5%)
  • Potentiometer setting accuracy
  • Thermal contact quality
  • Measurement accuracy

Expected accuracy: ±2-5°C

ProblemPossible CauseSolution
TEMP LED always OFFWrong NTC type/valueVerify 10kΩ @ 25°C
Incorrect thresholdCalculation errorRecalculate using datasheet
Temperature oscillationPoor thermal contactImprove NTC mounting
Premature shutdownR_POT too highRecalculate and adjust

Double-check your calculations:

  1. Verify NTC resistance from datasheet
  2. Check multiplication/division
  3. Confirm Beta value used
  4. Test with controlled heating